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ABSTRACT 
A hybrid method, which couples equilibrium 
equations and compatibility conditions 
developed based on the equilibrium equations, is 
proposed for the analysis of annular plate 
bending problems. An axisymmetric line 
element having 2 force and 4 displacement 
degrees of freedom is developed with the 
necessary matrix formulation based on the 
integrated force method. In addition to 
convergence study, a variety of problems of 
annular plates under different loading and 
boundary condition are solved. Matlab software 
is exploited to plot moment contours and 
deformed geometry of annular plate.  Results 
are compared with the available classical 
solutions to demonstrate the effectiveness of the 
proposed method; a good agreement is 
indicated. 

Keywords - Axisymmetric element, Bending 
problems, Convergence study, Integrated force 
method, Matlab software 

1. INTRODUCTION 
Annular plate is a plane structural geometry with 
circular plan having a circular hole at the center 
with specific purpose with dimensions as per 
practical applications, i.e. pressure vessels, 
automotive and large machinery components etc. If 
the thickness of circular plate is not greater than 
one tenth of the diameter, one needs not to model it 
as a 3D continuum and simple 2D plate theory can 
be applied to calculate the deformation and 
stresses. Further, if the plate is axisymmetrically 
loaded instead of asymmetrically loaded, its 
axisymmetric behavior allows one to treat it as a 
1D problem. 

     The governing equations for circular plated 
structures can be obtained by using either simple 
mathematical transformation from rectangular 
cartesian coordinate system to polar coordinate 
system or by direct derivation in the polar 
coordinate system [1]. Each approach has its own 

mathematical insights and loopholes. As 
transformation from rectangular to polar coordinate 
system needs quite a bit of mathematical 
manipulations, it is generally not preferred.  

     There exist various numerical methods to solve 
the problems of annular plate such as Finite 
Difference Method (FDM), Boundary Element 
Method (BEM), Finite Strip Method (FSM) and 
Finite Element Method (FEM) [2]. Few direct and 
indirect approaches are also available, where it 
bypasses the mathematical derivation of the Euler-
Langrage’s equations and start directly from the 
variation formulation. One such direct method was 
proposed by Lord Rayleigh and then it was 
generalized independently by Ritz; later on it was 
named as Rayleigh-Ritz method [1].  However, the 
Rayleigh-Ritz method for annular plate does not 
give the exact solution due to lack of logarithmic 
terms.  

     In the present paper, a hybrid method for 
handling the axisymmetric plate bending problems 
with circular hole at the center is considered. The 
method is based on Integrated Force Method (IFM) 
[3] which combines the Equilibrium Equations 
(EEs) and the Compatibility Conditions (CCs) 
developed based on EEs by using a systematic 
concatenation procedure.  By using this approach, 
one can calculate the internal moments and then the 
nodal displacements; if required. Recent 
development in integrated force method comprises 
of formulation of new novel condition, which 
completes the Beltrami-Michell’s Formulation 
(BMF) in polar coordinates, which have been 
validated in past by solving mixed Boundary Value 
Problem (BVP) [4 -5].  

     A two noded radial element is developed in the 
present work with two force and four displacement 
degrees of freedom.  Necessary matrices are 
derived by discretizing the expressions for potential 
and complimentary strain energies. After 
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describing the solution procedure, a variety of 
annular plate problems are analysed under Uniform 
Lateral Pressure (ULP) and Line Loading (LL) 
acting along either outer edge or inner edge. 
Results obtained for internal moments and 
deflections are compared with the available 
analytical solutions [6]. 

2. THE MATRIX FORMULATION  
2.1 The Hybridization Concept 
The equations for a continuum discretized into  
finite number of elements with ‘n’ and ‘m’ force 
and displacement degrees of freedom respectively, 
are obtained in the hybrid method by coupling the 
‘m` number  of equilibrium equations and  r = n – 
m  compatibility conditions. The m equilibrium 
equations (EE) are written as:  
 
 [B] {F} = {P}         … (1) 
 
and the’ r’ compatibility conditions are written as: 
 
[C] [G] {F} = {δR}                                        … (2) 
 
     The governing equations are expressed as:  
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Or [S] {F} = {P}     … (3) 

 
     Displacements {X} are calculated using the 
following equation: 
 
{X} = [J] {[G] {F} + {β0}                               … (4) 
 
     In the above equation, {F} is obtained using (3), 
[J] = m rows of [[S]-1]T

, [B] is equilibrium matrix of 
m x n size which is sparse and unsymmetrical, [G] 
is a symmetrical flexibility matrix; it is a block-
diagonal matrix, where each block represents the 
element  flexibility matrix for an element,  [C] is 
the compatibility matrix of size r x n, {δR} = - [C] 
{β}0 is the effective deformation vector with {β}0 

being  the initial deformation vector of dimension 
’n’, [S] is the IFM governing unsymmetrical matrix 
of size n x n, [J] is the m x n size deformation 
coefficient matrix which is back-calculated from 
[S] matrix. 
 
2.2 The Equilibrium Matrix [Be] 

The elemental equilibrium matrix written in terms 
of forces at nodal points represents the vectorial 
summation of ‘n’ internal forces {F} and ‘m’ 
external loads {P}. The nodal EE in matrix notation 
can be stored as rectangular matrix [Be] of size m x 
n. The variation functional is evaluated as a portion 
of IFM functional which yields the basic elemental 
equilibrium matrix [Be] in explicit form as follows: 
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          ε}da{M
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T                                     … (6) 

 where {M}T = (Mr, Mθ) are the internal moments 

and {Є}T=  represents  the 

curvatures corresponding to each internal moment.
  
     Consider a two-noded, 4 displacement degrees 
of freedom (X1 to X4) line element of thickness t 
with length as ‘a’ along the radial direction and r1 
and r2 as radius of left and right nodes respectively 
as shown in Fig.1.     
 
     The force field is chosen in terms of two 
independent forces F1 and F2. Relations between 
internal moments and independent forces are 
written in matrix form as: 
                

                                                                              

or    eFYM                                          …  (7)       

     Displacement function by considering r1 and r2 
as radius of extreme points of the element can be 
written as:

 

  

 

                                             … (8)                   

Where  

, 
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where [N] is a shape function matrix which is a 
function of  r and {X} is a displacement vector. By 
arranging all force and displacement functions 
properly, one can discretize the (5) to obtain the 
elemental equilibrium matrix as follows: 

Ue = {X}T [Be] {F}                                  … (9) 
 
where [Be] = 2π [Y] r dr                      … (10) 

 
where again [Z] = [L][N]; [L] is the differential 
operator matrix with respect to r, [N] is the 
displacement interpolation function matrix and [Y] 
is the force interpolation function matrix. After 
calculating [Z] matrix and stress interpolation matrix 
[Y] and integrating, the equilibrium matrix [Be] is 
obtained using the relation given in (10). For 
element 1, for example, with r1 = b and r2 = (a + b), 
the [Be] matrix will be as follows: 
  

  [Be] =                                  … (11) 

 
2.3 The Flexibility Matrix [Ge]  
The basic elemental flexibility matrix is obtained by 
discretizing the complementary strain energy which 
gives: 
 
[Ge]= 2π  r dr                            … (12) 

 
where [Y] is moment interpolation function matrix 
and [D] is material property matrix of size 2 x 2. 
Substituting values in (12) and integrating, it yields 
the symmetrical flexibility matrix [Ge] which for the 
first element is as follows: 
   

     …  (13)      

 
 
2.4 The Compatibility Matrix [C] 

The compatibility matrix is obtained from the 
deformation displacement relation ({β} = [B]T{X}). 
In DDR all the deformations are expressed in terms 
of all possible nodal displacements and the ‘n - m’ 
compatibility conditions are developed in terms of 
internal forces i.e., F1,------Fn where ‘n’ is the total 
number of internal forces in a given problem. The 
concatenating or global compatibility matrix [C] can 
be evaluated by multiplying the coefficients of the 
compatibility conditions and the global flexibility 
matrix [G]. 

3. THE SOLUTION PROCEDURE 

Due to axi-symmetric nature of the problem, only 
one radial line is considered for the study of 
behavior of annular plate. A two noded line 
element having length ‘a’ with two force and four 
displacement degrees of freedom is used for 
discretizing the problem into desired number of 
elements. The [Be] matrix is obtained by 
substituting the values of length of element ‘a’ and 
internal radius of annular plate ‘b’ in (11), which 
gives a global equilibrium matrix.  The load vector 
{P} is then calculated by using (3) depending upon 
the type of loading on the plate. Primary 
unknowns, the forces {F} are then obtained by 
using Matlab’s inverting routine [7]. Finally, the 
displacements are obtained by using the relation 
({X} = [J] [G] {F}), where [J] = m rows of matrix 
[[S]-1]T.  

Software is developed for annular plate bending 
problems using VB.NET programming language in 
which different forms are developed for input of 
data using different text boxes. Automated link is 
also developed between Matlab based auto-
generation CC module and input data. Transferring 
of data of various necessary matrices is also 
automated, which is needed for the further 
calculation. Different plots for the plate such as 
deformed shape and moment contours are managed 
through Matlab software.  

4. ANNULAR PLATE BENDING EXAMPLES 

The data assumed for numerical study of 
axisymmetrically loaded annular plates is as 
follows. A Uniform Lateral Pressure (ULP) q of 106 
N/m2 (1 MPa) on total plate surface and Line 
Loading (LL) p of 1000 N/m at inner or outer edge 
of the annular plate are considered. The outer and 
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inner diameters of the plate are taken as 200 mm and 
80 mm respectively with thickness of plate as 10 
mm. The modulus of elasticity of steel plate is 
considered as 2.01 x 1011 N/m2 with Poisson’s ratio 
as 0.3 [6].  
 
     Using the developed software, first, a 
convergence study is carried out to decide the 
suitable number of elements. Fig. 2 shows the 
convergence graph for deflection at the outer edge 
for annular plate with clamped condition at the 
inner edge and free at the outer boundary subjected 
to uniformly lateral pressure of 1 MPa. As can be 
seen from the convergence graph, discretization 
with 5 elements gives results quite close to the 
exact solution and therefore for remaining 
examples 5 element discretization is used along a 
radial line. In Table 1 results obtained for 
deflection w and moments Mr and MӨ along a 
radial line at different nodal points are compared 
with the available solution [6] for uniform lateral 
pressure q and line loading p for clamped boundary 
conditions. Figs. 3 and 4 depict the contours for Mr 
and MӨ of right upper part of quarter annular plate 
for plate subjected to line loading and having 
clamped boundary condition at inner edge. Fig. 5 
shows the complete 3D deformed shape for a 
clamped outer periphery plate when inner edge is 
subjected to LL.  
 
     Next, an example of an annular plate subjected 
to uniform lateral pressure with support conditions 
as simply supported at inner and outer edges is 
considered. The results obtained for lateral 
deflection w and moments Mr and MӨ at internal 
nodes are tabulated in Table 2 whereas Fig. 6 
depicts the deformed shape. 
 
     The last example considered here is that of an 
annular plate having inner edge as clamped and 
outer edges as simply supported. The results 
obtained under uniform lateral pressure are 
reported in Table 2. 

5. CONCLUSIONS 
The proposed hybrid method which is based on 
integration of equilibrium and compatibility 
conditions is found quite suitable for handling 
axisymmetrically loaded annular plate bending 
problems. The method is found to provide lower 

bound solution for lateral deflection with 
monotonic convergence towards the exact solution.  

     The comparison of results obtained for 
deflections and moments using the developed code 
based on the suggested hybrid method with 5 
element discretization indicated a good agreement 
with those based on the classical methods [6] for a 
variety of problems under different boundary 
conditions at inner and outer periphery when the 
plate is subjected to uniform lateral pressure or a 
line load along inner or outer periphery.  
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          Fig. 1 Annular plate showing discretization including element DOF 
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                     Fig. 2 Convergence graph for deflection at outer periphery  
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Fig. 3   Contours of Mr for plate clamped along inner edge and outer edge under line loading 
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Fig. 4   Contours of Mθ for plate clamped along inner edge and outer edge under line loading 
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Fig. 5 Deformed shape of annular plate under uniform lateral pressure with clamped inner edge 

 

 

 

 

 

 

Fig. 6 Deformed shape of annular plate under uniform lateral pressure with inner and outer edges as SS 
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Table 1 Results Obtained for Clamped Annular Plate 

 
Ex.
No. TYPE NODE 

δ (mm) Mr ( kN-mm) Mθ ( kN-mm) 
IFM Exact IFM Exact IFM Exact 

1 

Clamped  ( Outer ) 
ULP 

 
 

1 0.0185 0.0199 0.00 0.000 899.14 901.6 
2 0.0081 0.0087 41.32 44.19 596.21 617.3 
3 0.0032 0.0004 89.21 100.54 365.1 394.1 
4 0.0020 0.0003 334.2 339.8 145.12 174.1 
5 0.0001 0.0002 670.4 675.9 59.21 63.11 
6 0.0000 0.0000 998.1 1088 321.14 330.1 

2 

Clamped  ( Outer ) LL 
 
 

1 0.0012 0.002 0.00 0.000 20.14 24.60 
2 0.0014 0.0016 -5.14 -6.01 19.14 24.98 
3 0.0011 0.0013 -9.11 -9.84 19.00 23.66 
4 0.0007 0.0009 -12.00 -12.62 18.11 22.73 
5 0.0003 0.0004 -14.10 -14.81 18.04 21.60 
6 0.000 0.0000 -16.54 -16.58 18.00 20.14 

3 

Clamped ( Inner ) 
ULP 

 
 

1 0.000 0.000 -331.2 -335.7 -92.14 -100.7 
2 0.032 0.040 -180.0 -183.3 -214.1 -238.1 
3 0.101 0.140 345.2 375.0 -294.1 -295.8 
4 0.135 0.166 365.1 375.9 -349.1 -357.6 
5 0.211 0.243 228.2 241.86 -442.5 -449.3 
6 0.322 0.332 0.00 0.00 -568.1 -579.8 

4 

Clamped ( Inner ) 
LL 

 
 

1 0.000 0.00 -50.00 -57.45 -89.12 -92.45 
2 0.0011 0.0014 -30.44 -34.69 -60.75 -68.69 
3 0.0031 0.0033 -19.45 -21.27 -50.14 -56.27 
4 0.0051 0.0055 -11.47 -12.14 -43.14 -47.14 
5 0.0070 0.008 -5.00 -5.36 -38.54 -40.36 
6 0.091 0.108 0.00 0.00 -30.11 -35.14 
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Table 2 Results Obtained for Annular Plates Simply Supported at Outer Edge 

Ex. 
No. TYPE NODE 

δ (mm) Mr (kN-mm) Mθ ( kN-mm) 
IFM Exact IFM Exact IFM Exact 

1 

SS (Outer & Inner ) 
ULP 

 
 

1 0.00 0.00 0.00 0.00 566.2 597.1 
2 0.018 0.020 -124.3 -127.1 145.3 150.2 
3 0.031 0.032 -345.1 -350.1 -187.2 -195.7 
4 0.030 0.034 -487.1 -500.8 -502.5 -515.8 
5 0.021 0.024 -700.3 -724.1 -823.5 -837.3 
6 0.00 0.00 0.00 0.00 -1021 -1133 

2 

SS ( Outer )  & 
Clamped ( Inner )  

ULP 
 
 
 

1 0.00 0.00 1698 1761 498.2 528.1 
2 0.005 0.0052 534.3 567.1 434.1 471.1 
3 0.011 0.014 -312.1 -339.1 302.3 334.5 
4 0.014 0.020 -1093 -1141 -267.2 -285.1 
5 0.014 0.017 -1832 -1894 -734.1 -741.1 
6 0.00 0.00 -2477 -2652 -1178 -1219 

 

q q 
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